
CI046 | Published : 10- April -2018 | March-April - 2017 [(4) 5: 438-443]

2nd International Conference on Current Research Trends in Engineering and Technology

© 2018 IJSRSET | Volume 4 | Issue 5 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099

Themed Section: Engineering and Technology

438

Eco Geography-Based Optimization : An Improved Water Wave

Optimization Models to Solve NP-Hard

Digvijaysinh Mahida, Pinkal Shah, Trilok Suthar, Dipak Agrawal, Pritesh Patel
 Department of Information technology, Sigma Institute of Engineering, Vadodara, Gujarat, India

ABSTRACT

Nature-inspired computing has been a hot topic in scientific and engineering fields in recent years. Inspired by

the shallow water wave theory, the paper presents a novel metaheuristic method, named Water wave

optimization(WWO), for global optimization problems. Two methodologies are there to find shortest path one

is ant colony optimization and another is water optimization algorithm. it also fixes no of problem in real life

are Scheduling problem, Vehicle routing problem, Assignment problem, Set problem, Device sizing problem in

Nano electronics physical design, Image processing and TSP (Traveling sales man problem).

Keywords: Ant colony optimization (ACO), Water optimization algorithm, Evolution computing (EC),

Traveling salesman problem (TSP), Swarm

I. INTRODUCTION

Ant colony optimization is a technique for

optimization that was introduced in the early

1990’s. The inspiring source of ant colony

optimization is the foraging behaviour of real ant

colonies. This behaviour is exploited in artificial ant

colonies for the search of approximate solutions to

discrete optimization problems, to continuous

optimization problems, and to important problems

in telecommunications, such as routing and load

balancing [1].it also fix no of problem in real life are

Scheduling problem, Vehicle routing problem,

Assignment problem, Set problem, Device sizing

problem in Nano electronics physical design, Image

processing and TSP (Traveling sales man problem).

Many engineering optimization problems are

usually quite difficult to solve, and many

applications have to deal with these complex

problems. In these problems, search space grows

exponentially with the problem size. Therefore, the

traditional optimization methods do not provide a

suitable solution for them. Hence, over the past few

decades, many meta-heuristic algorithm shave been

designed to solve such problems. Researchers have

shown good performance of meta- heuristic

algorithms in a wide range of complex problems

such as scheduling problems.

 Here we going to find better technique for solving

all above the problem which methodology is better

ant colony optimization and water optimization.

The way both are works are described below.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

439

II. WATER OPTIMIZATION APPROACH

The new concept of water optimization is quite

similar the ant colony optimization. It also finds

path from its source to the destination.

We can take example of river, water fall, and rain

water it starts from its source it dynamically

chooses the path using huge moving swarms. Water

in which they flow is the part of the environment

that has been dramatically changed by the swarm

and will also be changed in the future. We know

that in nature, most paths full of twists and turns.

Still it is believed that water swarm in have no eyes

so that by using those eyes, they can find their

destination. So simple water flow decides its path

its own on which cover less obstacle, less

difficulties, essay to flow to rich its destination. And

it finds shortest path from its source to destination

like ACO.

This concept is also useful to solve no of problem

like assignment problem, travelling salesman

problem, network routing and many problems can

be solved using water optimization algorithm. The

no of matter which observed in water flow

optimization:

1. The velocity of a water swarm increases more on

a path with low soil than a path with high soil.

2. A water swarm prefers a path with less soil than

a path with more soil.

3. A high speed water swarm gathers more soil than

a slower water drop.

III. PSEUDO CODE OF ANT COLONY

OPTIMIZATIONS [6] [7]

Initialize the base attractiveness, τ, and visibility, η,

For each edge;

For i < IterationMax do:

For each ant do:

Choose probabilistically (based on previous

equation)

The next state to move

Into;

Add that move to the tabu list for each ant;

Repeat until each ant completed a solution;

End;

For each ant that completed a solution do:

Update attractiveness τ for each edge that the ant

Traversed;

End;

If (local best solution better than global solution)

Save local best solution as global solution;

End;

End;

A. ALGORITHMS FOR SHORTEST PATH

PROBLEM

 1. Dijkstra's algorithm

2. Bellman–Ford algorithm

3. A* search algorithm

 4. Floyd–Warshall algorithm

5. Johnson's algorithm

6. Viterbi algorithm

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

440

1. Dijkstra's algorithm

function Dijkstra(Graph, source):

 2

 3 create vertex set Q

 4

 5 for each vertex v in Graph: //

Initialization

 6 dist[v] ← INFINITY // Unknown

distance from source to v

 7 prev[v] ← UNDEFINED //

Previous node in optimal path from source

 8 add v to Q // All nodes

initially in Q (unvisited nodes)

 9

10 dist[source] ← 0 // Distance

from source to source

11

12 while Q is not empty:

13 u ← vertex in Q with min dist[u] // Node

with the least distance

14 // will be

selected first

15 remove u from Q

16

17 for each neighbor v of u: // where v is

still in Q.

18 alt ← dist[u] + length(u, v)

19 if alt < dist[v]: // A shorter path

to v has been found

20 dist[v] ← alt

21 prev[v] ← u

22

23 return dist[], prev[]

2. Bellman–Ford algorithm

function BellmanFord(list vertices, list edges, vertex

source)

 ::distance[],predecessor[]

 // This implementation takes in a graph,

represented as

 // lists of vertices and edges, and fills two arrays

 // (distance and predecessor) with shortest-path

 // (less cost/distance/metric) information

 // Step 1: initialize graph

 for each vertex v in vertices:

 distance[v] := inf // At the beginning , all

vertices have a weight of infinity

 predecessor[v] := null // And a null

predecessor

 distance[source] := 0 // The weight is zero

at the source

 // Step 2: relax edges repeatedly

 for i from 1 to size(vertices)-1:

 for each edge (u, v) with weight w in edges:

 if distance[u] + w < distance[v]:

 distance[v] := distance[u] + w

 predecessor[v] := u

 // Step 3: check for negative-weight cycles

 for each edge (u, v) with weight w in edges:

 if distance[u] + w < distance[v]:

 error "Graph contains a negative-weight

cycle"

 return distance[], predecessor[]

3. . A* search algorithm

function A*(start, goal)

 // The set of nodes already evaluated

 closedSet := {}

 // The set of currently discovered nodes that are

not evaluated yet.

 // Initially, only the start node is known.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

441

 openSet := {start}

 // For each node, which node it can most

efficiently be reached from.

 // If a node can be reached from many nodes,

cameFrom will eventually contain the

 // most efficient previous step.

 cameFrom := an empty map

 // For each node, the cost of getting from the start

node to that node.

 gScore := map with default value of Infinity

 // The cost of going from start to start is zero.

 gScore[start] := 0

 // For each node, the total cost of getting from

the start node to the goal

 // by passing by that node. That value is partly

known, partly heuristic.

 fScore := map with default value of Infinity

 // For the first node, that value is completely

heuristic.

 fScore[start] := heuristic_cost_estimate(start, goal)

 while openSet is not empty

 current := the node in openSet having the

lowest fScore[] value

 if current = goal

 return reconstruct_path(cameFrom, current)

 openSet.Remove(current)

 closedSet.Add(current)

 for each neighbor of current

 if neighbor in closedSet

 continue // Ignore the

neighbor which is already evaluated.

 if neighbor not in openSet // Discover a

new node

 openSet.Add(neighbor)

 // The distance from start to a neighbor

 //the "dist_between" function may vary as

per the solution requirements.

 tentative_gScore := gScore[current] +

dist_between(current, neighbor)

 if tentative_gScore >= gScore[neighbor]

 continue // This is not a better

path.

 // This path is the best until now. Record it!

 cameFrom[neighbor] := current

 gScore[neighbor] := tentative_gScore

 fScore[neighbor] := gScore[neighbor] +

heuristic_cost_estimate(neighbor, goal)

 return failure

function reconstruct_path(cameFrom, current)

 total_path := [current]

 while current in cameFrom.Keys:

 current := cameFrom[current]

 total_path.append(current)

 return total_path

4. Floyd–Warshall algorithm

let dist be a |V| × |V| array of minimum distances

initialized to ∞ (infinity)

2 for each edge (u,v)

3 dist[u][v] ← w(u,v) // the weight of the edge

(u,v)

4 for each vertex v

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

442

5 dist[v][v] ← 0Ant Colony Optimization and

Water Optimazition Algorithm

6 for k from 1 to |V|

7 for i from 1 to |V|

8 for j from 1 to |V|

9 if dist[i][j] > dist[i][k] + dist[k][j]

10 dist[i][j] ← dist[i][k] + dist[k][j]

11 end if

5. Johnson's algorithm

1. First, a new node q is added to the graph,

connected by zero-weight edges to each of

the other nodes.

2. Second, the Bellman–Ford algorithm is used,

starting from the new vertex q, to find for

each vertex v the minimum weight h(v)of a

path from q to v. If this step detects a

negative cycle, the algorithm is terminated.

3. Next the edges of the original graph are

reweighted using the values computed by

the Bellman–Ford algorithm: an edge

from u to v, having length , is given

the new length w(u,v) + h(u) − h(v).

4. Finally, q is removed, and Dijkstra's

algorithm is used to find the shortest paths

from each node s to every other vertex in

the reweighted graph.

IV. CONCLUSION

Water optimization is helpful for solving many real

life problems like Scheduling problem, Vehicle

routing problem, Assignment problem, Set problem,

Device sizing problem in Nano electronics physical

design, Image processing and TSP (Traveling sales

man problem). TSP is NP hard problem and we can

find nearest solution for such problem and Water

optimization approach may be more helpful for

research in such problem.

V. REFERENCES

[1]. Christian Blum L. Perlovsky, “Ant colony

optimization: Introduction and recent t

rends”, ALBCOM, LSI, U niversitat

Politècnica de Catalunya, Jordi G irona 1-3,

Campus Nord, 08034 Barcelona, Spain

October 2005 .

[2]. A. Colorni, M. Dorigo et V. Maniezzo,

Distributed Optimization by Ant Colonies,

actes de la première conférence européenne

sur la vie artificielle, Paris, France, Elsevier

Publishing, 134-142, 1991.

[3]. Jump up to:a b M. Dorigo, Optimization,

Learning and Natural Algorithms, PhD thesis,

Politecnico di Milano, Italy, 1992.

[4]. Zlochin, Mark; Birattari, Mauro; Meuleau,

Nicolas; Dorigo, Marco (1 October 2004).

"Model-Based Search for Combinatorial

Optimization: A Critical Survey". Annals of

Operations Research. 131 (1-4): 373–395.

doi:10.1023/B:ANOR.0000039526.52305.af.

ISSN 0254-5330.

[5]. Osaba, E. Diaz, F.,” Comparison of a memetic

algorithm and a tabu search algorithm for the

traveling salesman

[6]. Problem”IEEE Computer Science and

Information Systems (FedCSIS), 2012

Federated Conference, 9 Sept. 2012

[7]. Kirti Pandey,Pallavi Jain,”Comparision of

different heuristic,metaheuristic,traveling

salesman problem solution”, , Proceedings of 1

6th IRF International Conference, 1 4th

December 2014, Pune, India, ISBN: 978-93 -

84209-74-2

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

443

[8]. Viterbi AJ (April 1967). "Error bounds for

convolutional codes and an asymptotically

optimum decoding algorithm". IEEE

Transactions on Information Theory. 13 (2):

260–269. doi:10.1109/TIT.1967.1054010.

[9]. Cormen, Thomas H.; Leiserson, Charles E.;

Rivest, Ronald L.; Stein, Clifford (2001),

Introduction to Algorithms, MIT Press and

McGraw-Hill, ISBN 978-0-262-03293-3.

Section 25.3, "Johnson's algorithm for sparse

graphs", pp. 636–640.

[10]. Bang-Jensen, Jørgen; Gutin, Gregory (2000).

"Section 2.3.4: The Bellman-Ford-Moore

algorithm". Digraphs: Theory, Algorithms and

Applications (First ed.). ISBN 978-1-84800-

997-4.

[11]. Bang-Jensen, Jørgen; Gutin, Gregory (2000).

"Section 2.3.4: The Bellman-Ford-Moore

algorithm". Digraphs: Theory, Algorithms and

Applications (First ed.). ISBN 978-1-84800-

997-4

[12]. Digvijaysinh Mahida1, Keyur Patel 2, Dipak

Agrawal” Ant Colony Optimization and

Water Optimazition Algorithm”

3International Journal of Advance

Engineering and Research Development

(IJAERD) Special Issue SIEICON-2017, April -

2017,e-ISSN: 2348 - 4470 , print-ISSN:2348-

6406

